USPSE WORKING PAPER SERIES

This working Paper series presents work in progress in the School of Economics at the University of the South Pacific. Comments and criticisms should be addressed to the authors. Authors share equal responsibility for the paper. Copyright reside with the authors. Additional copies are available from:-

The Secretary,
School of Economics
USP,
Suva, Fiji

Email: singh_is@usp.ac.fj or singh_r@usp.ac.fj
Fax: (679) 323 2522 OR 323 1506
Website: http://www.usp.ac.fj/ssedmain/dept/economics
ESTIMATING EXPORT EQUATIONS

By

B. Bhaskara Rao
School of Economics
The University of the South Pacific
Suva, Fiji

And

Rup Singh
School of Economics
The University of the South Pacific
Suva, Fiji
ESTIMATING EXPORT EQUATIONS

B. Bhaskara Rao and Rup Singh

University of the South Pacific, Suva (Fiji)

Abstract

Accurate estimates of the price and income elasticities of exports are valuable for growth policies based on trade promotion. However, not sufficient attention seems to have been paid to the specification of the relative price variable in some influential empirical works. This paper estimates the export equation for Fiji to show that inappropriate specification of the relative price variable may give under estimates of the price elasticity and over estimates of the income elasticity.

JEL: F14, F41, E21, C22;

KEYWORDS: Exports, Price and Income Elasticities, Export-lead Growth Policy.
1. INTRODUCTION

Estimating export demand functions for developing countries is important because the relative price and income elasticities indicate the scope for export-lead growth policies. The higher are these elasticities, the higher is the scope for export based growth policies. Therefore, it is important to avoid misspecification biases. However, in the current empirical literature the specification of the export equations are unsatisfactory. The usual specification for a country’s exports \(X \) in the log-liner form is:

\[
\ln X_t = \alpha_0 - \alpha_1 \ln \left(\frac{P_D}{E \times P_F} \right) + \alpha_2 \ln Y_F
\]

where \(P_D \) is domestic price of exports, \(P_F \) is price level of trading partners, \(E \) is exchange rate, measured as the price of foreign currency in domestic currency and \(Y_F \) is income of trading partners. Note that the relative price variable has three components viz., \(P_D \), \(E \) and \(P_F \). A 1% percent decline in relative prices could be due to a 1% decline in \(P_D \) or a 1% increase in \(E \) (depreciation) or \(P_F \).

However, in some influential empirical works e.g., Senhadji and Montenegro (1999), \(E \) is ignored in the relative price variable. This procedure seems to be widely used to quickly obtain expected empirical results with techniques like the fully modified OLS (FMOLS) of Phillips and Hansen (1990) and the bounds test (ARDL) of Pesaran and Shin (1995). Although the effects of omitting \(E \) on the estimated elasticities are difficult to estimate, it may be said that this could lead to an under estimation (over estimation) of the absolute value of price elasticity (\(\alpha_1 \)) if devaluations (appreciations) dominate the sample.

1 There is a vast amount of empirical literature, too many to cite in the references, on testing the export-lead growth policies. A search for literature from the home page of Applied Economics, listed 75 references on this topic published in that journal and other sister journals of Applied Economics. A useful survey of the literature on export-lead growth is in Giles and Williams (2000).

2 Senhadji (1998) and Dutta and Ahmed (2004) have ignored \(E \) in their equations for exports and imports, respectively. Some exceptions to such limitations are Nowak-Lehmann (2004), Abbott and De Vista (2002) and Muscatelli, Stevenson and Montagna (1995). Abbott and De Vista is a particularly interesting study and takes into account the simultaneous equations bias and imposes over-identifying restrictions implied by the underlying theory. More on this study later in this paper.
It is hard to say how this omission effects the estimate of income elasticity. This paper illustrates the aforesaid biases by estimating the export demand function for Fiji (1970-2002). We shall estimate the long run export equation, using the Phillips-Hansen FMOLS, the Johansen (1988) cointegration approach (JML) and the LSE-Hendry general to specific approach (GETS); see Hendry (1987). We have ignored the bounds approach of Pesaran and Shin because of its large range of indeterminacy for the cointegration test statistic. Although JML gave plausible point estimates of these two elasticities, they were insignificant. In comparison, both GETS and FMOLS gave good and significant estimates.

2. EMPIRICAL RESULTS

The specifications of export equation, with and without E in the relative price variable, are:

\[\ln X_t = \alpha_0 - \alpha_1 \ln \left(\frac{P_D}{E \times P_F} \right) + \alpha_2 \ln Y_F \]

(2)

\[\ln X_t = \beta_0 - \beta_1 \ln \left(\frac{P_D}{P_F} \right) + \beta_2 \ln Y_F \]

(3)

Definitions of the variables and sources of data are in the Appendix.

JML estimates of (2) and (3) are given in the first two columns of Table-1.\(^4\) The point estimates of the implied price and income

\(^3\) A formal econometric proof is complicated because we have used non-linear estimation methods. The approximate bias in OLS estimates can be computed by estimating three equations: (A) is the correct specification, (B) is the misspecified equation and (C) is an auxiliary regression:

\[\ln X_t = \alpha_0 - \alpha_1 \ln \left(\frac{P_D}{E \times P_F} \right) + \alpha_2 \ln Y_F \]

(A)

\[\ln X_t = \beta_0 - \beta_1 \ln \left(\frac{P_D}{P_F} \right) + \beta_2 \ln Y_F \]

(B)

\[\ln P_F = \gamma_0 + \gamma_1 \ln \left(\frac{P_D}{P_F} \right) + \gamma_2 \ln Y_F \]

(C)

Maddala (1992) shows that the expected values of the estimated coefficients from the misspecified equation (B) are: $E(\beta_1) = (1 + \gamma_1) \times \alpha_1$ and $E(\beta_2) = (1 + \gamma_2) \times \alpha_2$. Thus, the magnitude of this bias depends on the coefficients in the auxiliary equation.

\(^4\) We have used a VAR(1) model, after determining its optimal order with both AIC and SBC. However, we faced problems with the Johansen JML procedure.
elasticiies are correctly signed but in neither equation they are significant. Exogeneity tests showed that both the relative price variables are weakly exogenous and the lagged ECM term is significant only at the 11.8% and 10% levels, respectively, in the VAR of equations for (2) and (3). These estimates, normalized on $\ln X$, are reported as JML(2) and JML(3). They should be interpreted only as an indication that ignoring E, in the relative price variable, would lead to an under estimation of the absolute value of relative price elasticity, -2.578 against -1.357 and to an over estimation of income elasticity, 1.147 against 1.641.

Table 1
Export Equations for Fiji

<table>
<thead>
<tr>
<th>Variable</th>
<th>JML(2)</th>
<th>JML(3)</th>
<th>GETS(2)</th>
<th>GETS(3)</th>
<th>FMOLS(2)</th>
<th>FMOLS(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln \frac{P_D}{E \times P_F}$</td>
<td>-2.578</td>
<td>-0.862</td>
<td>-1.018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.56)</td>
<td>(3.27)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln \frac{P_P}{P_F}$</td>
<td>-1.357</td>
<td>-1.202</td>
<td>-1.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.78)</td>
<td>(4.74)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln Y_F$</td>
<td>1.147</td>
<td>1.641</td>
<td>1.164</td>
<td>1.652</td>
<td>0.995</td>
<td>1.379</td>
</tr>
<tr>
<td></td>
<td>(9.44)</td>
<td>(64.48)</td>
<td>(8.88)</td>
<td>(15.88)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Const.</td>
<td>2.431</td>
<td>0.056</td>
<td>1.971</td>
<td>2.536</td>
<td>0.974</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.75)</td>
<td>(4.37)</td>
<td>(1.99)</td>
<td>(4.37)</td>
<td>(1.99)</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>-0.001</td>
<td>-0.001</td>
<td></td>
<td>-0.001</td>
<td>-0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.16)</td>
<td></td>
<td>(0.12)</td>
<td>(0.16)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The cointegrating vectors are normalized on $\ln X$. JML(2) means JML estimate of equation (2) etc. t-ratios are in the parentheses. t-ratios for the GETS equations are based on the Newey-West adjustment. t-ratios for the JML equations in columns (1) and (2) are not reported because they are highly insignificant. Microfit 4.1 of Pesaran and Pesaran (1997) is used for estimation.

Using these insights, we have estimated equations (2) and (3) with

The null that there is at least one cointegrating vector for equation (2) could be accepted only at the 90% level by the trace test. For equation (3) this null is accepted by both the eigenvalue and trace tests at the 95% level.
GETS.\(^5\) The GETS estimates are in columns (3) and (4) of Table-1. The estimated elasticities, in both equations, are correctly signed and significant. However, the point estimates of price elasticities show that it is only slightly higher in (3) but the null that these two estimates are equal could not be rejected at the 5% level of significance. The computed test statistic is \(\chi^2 = 1.022 \quad (p = 0.312)\). In contrast, there are significant differences in the estimates of income elasticities. While equation (2) implies an income elasticity of 1.164, equation (3) gives an estimate of 1.652. The computed test statistic for the null that these are equal is \(\chi^2 = 15.683 \quad (p = 0.000)\) and the null is rejected.

Estimates with FMOLS are in columns (5) and (6). Unlike the Johansen JML and GETS, FMOLS does not seem to have the option to restrict the intercept and trend in the underlying VAR. Consequently, it became necessary to add a supply shock variable \((SS)\) with a lag of two periods to get meaningful estimates of equation (2). \(SS\) is retained in equation (3) for comparable results.\(^6\) The estimated coefficients in both equations, except that of \(SS\), are significant and have the expected signs. It is noteworthy that, like in GETS, there is no significant difference in the estimated relative price elasticities of \(-1.018\) against \(-1.024\), but income elasticities are significantly different at 0.995 against 1.379. The test statistics for the null of no significant difference between them is \(\chi^2 = 11.710 \quad [p = 0.001]\) and the null is rejected.

From these alternative estimates, it can be said that excluding the exchange rate in the relative price variable is perhaps less serious for the estimates of the price elasticity. This may be partly due to the fact that depreciation regimes are relatively less dominant in our sample for Fiji. The Fiji dollar was stable or appreciated in 19 out of 33 periods. It would be interesting to know whether the price elasticity estimates would be close if depreciation regimes dominate in the samples of other developing countries. However, in these alternative methods, the income elasticity is unequivocally overestimated by 40% to 65% when \(E\) is excluded in the relative price variable.\(^7\) Such a magnitude of overestimation gives the misleading implication that by liberalizing

\(^{5}\) In the Johansen JML, it was necessary to use a restricted intercept in the VAR. Therefore, we have estimated the GETS equations with NLLS to allow for this restriction. However, the intercept was significant only in (2).

\(^{6}\) \(SS\) is found be I(1) with a long lag structure of 7 periods in the ADF test.

\(^{7}\) The insignificant bias in the relative price elasticity is due to a small value of 0.046 for \(\gamma_1\) in the auxiliary regression. In contrast, the estimate of \(\gamma_2\) is 0.370 implying that income elasticity could be overestimated, in the misspecified equation, by about 40%. See footnote 2.
Exports: Fiji

trade, a developing country can substantially increase exports if its trading partners grow faster. What seems to be necessary for the success of an export-lead growth policy is a substantial reduction in the relative prices, either by decreasing domestic costs of exports or through timely adjustments to the exchange rate.

3. CONCLUSIONS

In this paper we have empirically shown that neglecting the exchange rate in the relative price variable of the export equation causes an overestimation of the income elasticity. Although it could not be conclusively shown that this leads to an underestimation of the relative price elasticity, because our sample is not dominated by depreciation regimes, we conjectured that underestimation is likely for countries in which depreciation regimes dominated the sample. Therefore, we hope that our conjecture will be tested by other investigators. A clear cut policy implication of our findings is that, since income elasticities are substantially overestimated in the existing empirical works that exclude the exchange rate in the relative prices, fresh estimates are necessary to determine the scope for export-driven growth policies. It is also reasonable to conjecture that the relative price and income elasticities in the import equations will be similarly biased if the relative price variable is improperly specified. Since these biases can be avoided by including the exchange rate in the relative price variable, the current popular practice of ignoring the exchange rate is unwarranted.

A limitation of our and similar studies is that they ignore the supply side effects. While such limitations are not serious for many developing countries that do not have a booming export sector, well specified demand and supply equations should be jointly estimated for countries with thriving export sectors. For example, Abbott and De Vitta (2002) have shown that when both demand and supply equations for Hon Kong’s manufactured goods are jointly estimated estimated, income and price elasticities are found to be high at 1.9 and −2.1 respectively. Therefore, while our results are useful as a starting point, care should be exercised in generalising them until more refined methods of estimation have been used.
Data Appendix

Y_F is the trade weighted average real income of Fiji’s major trading partners, viz., Australia, New Zealand, USA, UK/EU and Japan. Trade weights are computed as the share of trade to each of these countries relative to Fiji’s total trade.

X_t is Fiji’s total exports of goods and services (FOB) deflated by the export price index.

P_D is the price of Fiji’s export goods, computed as the weighted average of Fiji’s unit value index of major domestic exports.

E_t is the weighted average exchange rate and is the price of a unit of foreign currency in domestic currency.

P_F is the import weighted average of major trading partners’ export price indices. Import weights are computed as the share of respective imports to total imports.

SS is a proxy for export productivity proxied with the average productivity of sugar per hectare from the Key Economics Statistics, various years. Sugar is the major export of Fiji.

Notes: Data on the are from the IFS CD-ROM 2003 and the Reserve Bank of Fiji Quarterly Review, for various years.

Working Paper Series

2006/wp:

1. Rup Singh, *An Investment Equation for Fiji*

2005/wp:

26 B. Bhaskara Rao, Fozia Nisha & Biman C. Prasad, *The Effects of Life Expectancy on Growth*

25 B. Bhaskara Rao, Rup Singh, & Neelesh Gounder, *Investment Ratio in Growth Equations*

24 T.K. Jayaraman, *Regional Economic Integration in the Pacific: An Empirical Study*

23 B. Bhaskara Rao & Maheshwar Rao, *Determinants of Growth Rate: Some Methodological Issues with Time Series Data from Fiji*

22 Sukhdev Shah, *Exchange Rate Targeting of Monetary Policy*

21 Paresh Narayan and Baljeet Singh, *Modeling the Relationship between Defense Spending and Economic Growth for the Fiji Islands*

20 TK Jayaraman, *Macroeconomics Aspects of Resilience Building in Small States*

19 TK Jayaraman, *Some “Shocking Aspects” of a Regional Currency for the Pacific Islands*

18 Bimal B. Singh and Biman C. Prasad, *Employment-Economic Growth Nexus and Poverty Reduction: An Empirical Study Based on the East Asia and the Pacific Region*

17 Biman C. Prasad and Azmat Gani, *Savings and Investment Links in Selected Pacific Island Countries*

16 T.K. Jayaraman, *Regional Integration in the Pacific*

14 Philip Szmedra, KL Sharma, and Cathy L. Rozmus, *Managing Lifestyle Illnesses in Pacific Island States: The Case of Fiji, Nauru and Kiribati*

13 Philip Szmedra and KL Sharma, *Lifestyle Diseases and Economic Development: The Case of Nauru and Kiribati*

12 Neelesh Gounder, *Rural Urban Migration in Fiji: Causes and Consequences*

11 B. Bhaskara & Gyaneshwar Rao, *Further Evidence on Asymmetric US Gasoline Price Responses*

10 B. Bhaskara Rao & Rup Singh, *Demand for Money for Fiji with PC GETS*

9 B. Bhaskara Rao & Gyaneshwar Rao, *Crude Oil and Gasoline Prices in Fiji: Is the Relationship Asymmetric?*

8 Azmat Gani & Biman C. Prasad, *Fiji’s Export and Comparative Advantage*

7 Biman C. Prasad & Paresh K Narayan, *Contribution of the Rice Industry to Fiji’s Economy: Implication of a Plan to Increase Rice Production*

6. Azmat Gani, *Foreign Direct Investment and Privatization*

5 G. Rao, *Fuel Pricing In Fiji*

4 K. Bunyaratavej & Tk Jayaraman, *A Common Currency For The Pacific Region: A Feasibility Study*

3 Sukhdev Shah, *Kiribati’s Development: Review And Outlook*

1 T.K. Jayaraman, *Dollarisation Of The South Pacific Island Countries: Results Of A Preliminary Study*

2004/wp:

15 Vincent D. Nomae, Andrew Manepeora’a, Sunil Kumar & Biman C. Prasad, *Poverty Amongst Minority Melanesians In Fiji: A Case Study Of Six Settlements In Suva*

14 Elena Tapuaiga & Umesh Chand, *Trade Liberalization: Prospects and Problems for*
Small Developing South Pacific Island Economies

10 Khainhaiya L. Sharma, Growth, Inequality and Poverty in Fiji Islands: Institutional Constraints and Issues.
9 B. Bhaskara Rao, Testing Hall’s Permanent Income Hypothesis for a Developing Country: The Case of Fiji.
7 B. Bhaskara Rao, The Relationship Between Growth and Investment.
6 Wadan Narsey, PICTA, PACER and EPAs: Where are we going? Tales of FAGS, BOOZE and RUGBY
4 Michael Luzius, Fiji’s Furniture and Joinery Industry: A Case Study.
3 B. Bhaskara Rao & Rup Singh, A Consumption Function for Fiji.
2 Ashok Parikh & B. Bhaskara Rao, Do Fiscal Deficits Influence Current Accounts? A Case Study of India.

2003/wp:

9 B. Bhaskara Rao, The Nature of The ADAS Model Based on the ISLM Model.
8 Azmat Gani, High Technology Exports and Growth – Evidence from Technological Leader and Potential Leader Category of Countries.
7 TK Jayaraman & BD Ward, Efficiency of Investment in Fiji: Results of an Empirical Study.
6 Ravinder Batta, Measuring Economic Impacts of Nature Tourism.
5 Ravinder Batta, Ecotourism and Sustainability.
4 TK Jayaraman & Rajesh Sharma, Determinants of Interest Rate Spread in the Pacific Island Countries: Some Evidence From Fiji.
1 T.K. Jayaraman, A Single Currency for the South Pacific Islands: A Dream or A Distant Possibility?

2002/wp:

8 Biman C. Prasad & John Asafu-Adjaye, Trade Liberalisation and Environment in Pacific Forum Island Countries (FICs): Is it a case of “Two Gains For One”?
5 Gyaneshwar Rao, Fiji Exports to Australia and New Zealand under SPARTECA Agreement.
4 Jon Fraenkel, An Introduction to the Economic History of the Pacific Islands.
3 Biman C. Prasad, Trade Liberalisation in the South Pacific Forum Island Countries: A Panacea for Economic and Social ills?
2 Rick Hou & T.K. Jayaraman, Central Bank Cooperation and Coordination in the Pacific Islands.
1 T.K. Jayaraman & B.D. Ward, Impact of
Financial Sector Reforms and Stability of Money Demand Function in Samoa.

2001/wp:

6 T.K. Jayaraman, *Financial Sector Reforms in the South Pacific Island Countries.*

4 Sunil Kumar & Biman Prasad, *Savings and Investment Funds: Implications for Economic Growth in Fiji.*

2 Oskar Kurer, *ALTA and Rent: Who Exploits Whom?*

1 R. Sathiendrakumar, *Importance of Marine Tourism and Environmental Protection: In Some Selected Indian Ocean Islands.*

2000/wp:

4 T.K. Jayaraman, *Monetary Policies In The South Pacific Island Countries: Past Trends And Future Directions.*

3 Umesh Chand, *Employments and Earnings in Fiji’s Public Health Sector.*
